An Evaluative Tool For Preoperative Planning of Brain Tumor Resection
نویسندگان
چکیده
A patient specific finite element biphasic brain model has been utilized to codify a surgeon's experience by establishing quantifiable biomechanical measures to score orientations for optimal planning of brain tumor resection. When faced with evaluating several potential approaches to tumor removal during preoperative planning, the goal of this work is to facilitate the surgeon’s selection of a patient head orientation such that tumor presentation and resection is assisted via favorable brain shift conditions rather than trying to allay confounding ones. Displacement-based measures consisting of area classification of the brain surface shifting in the craniotomy region and lateral displacement of the tumor center relative to an approach vector defined by the surgeon were calculated over a range of orientations and used to form an objective function. The objective function was used in conjunction with Levenberg-Marquardt optimization to find the ideal patient orientation. For a frontal lobe tumor presentation the model predicts an ideal orientation that indicates the patient should be placed in a lateral decubitus position on the side contralateral to the tumor in order to minimize unfavorable brain shift.
منابع مشابه
Initial Experience with Brain Mapping under Awake Craniotomy for Resection of Insular Gliomas of the Dominant Hemisphere
Background & Importance: Insular lobe is located at the depth of sylvian fissure and is hidden by frontal, temporal and parietal lobes in close vicinity of internal capsule and basal ganglia and adjacent to the speech centers in the dominant hemisphere. Thus, radical resection of insular gliomas can be even more difficult. Brain mapping techniques can be used to maximize the extent of...
متن کاملCompensation of brain shift during surgery using non-rigid registration of MR and ultrasound images
Background: Surgery and accurate removal of the brain tumor in the operating room and after opening the scalp is one of the major challenges for neurosurgeons due to the removal of skull pressure and displacement and deformation of the brain tissue. This displacement of the brain changes the location of the tumor relative to the MR image taken preoperatively. Methods: This study, which is done...
متن کاملPreoperative functional MRI of motor and sensory cortices: how imaging can save vital functions
Clinical importance The ability to visualize brain activity and to determine which parts of the brain are responsible for which cognitive processes has revolutionized the neurosciences [1–3]. The use of blood oxygen leveldependent (BOLD), functional MRI (fMRI) in the clinical setting benefits patients insomuch as it allows neurosurgeons to be aware of and to navigate the precise location of pat...
متن کاملComparison of Pre/Post-Operative CT Image Volumes to Preoperative Digitization of Partial Hepatectomies: A Feasibility Study in Surgical Validation
Preoperative planning combined with image-guidance has shown promise towards increasing the accuracy of liver resection procedures. The purpose of this study was to validate one such preoperative planning tool for four patients undergoing hepatic resection. Preoperative computed tomography (CT) images acquired before surgery were used to identify tumor margins and to plan the surgical approach ...
متن کاملAccuracy of Chest Wall Tumor Resection Guided by Navigation: Experimental Model
Difficulty in identification wall chest tumors lead to unnecessary wide resections. Optical navigation and preoperative virtual planning are assets for surgeries that require exactness and accuracy. These tools enable physicians to study real anatomy before surgery and to follow an established pathway during procedure ensuring effectiveness. The aim of this paper is to demonstrate that Preopera...
متن کامل